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Abstract
A simple SUSY Bose–Fermi Hamiltonian and a class of hard-core Bose–
Fermi Hamiltonians with high order terms constructed by using the gl(m/n)

generators are shown to be exactly solvable. Excitation energies and
corresponding wavefunctions are obtained by using a simple algebraic Bethe
ansatz.

PACS numbers: 03.65.Fd, 02.30.Ik, 74.20.Rp

Supersymmetry (SUSY) provides a unified description of bosons and fermions. In particle
physics, SUSY offers a possible way to achieve grand unification [1, 2]. SUSY was first studied
in the simplest case of SUSY quantum mechanics by Witten, and Cooper and Freedman as
a testing ground for the non-perturbative approaches to searching for SUSY breaking in field
theory [3–5]. It was realized that SUSY gives insight into the factorization method [6] which
was the first method to classify analytically solvable potentials. Over the past few decades, the
ideas of SUSY have stimulated new approaches in other branches of physics. For example,
evidence has been found for a dynamical SUSY relating even–even and even–odd nuclei [7, 8].
There have also been applications of SUSY in atomic, condensed matter and statistical physics
[9–13]. Many researchers extended ideas of SUSY quantum mechanics to other cases and to
systems with large numbers of particles with a motivation to understand potential problems of
widespread interests [14–16].

In [17], a mean-field plus extended pairing interaction Hamiltonian with many-pair
interaction terms was proposed. Though the model contains high order interaction terms,
it was shown to be exactly solvable. In this paper, it will be shown that a simple Bose–
Fermi SUSY Hamiltonian and an extension of the model including a class of boson–boson,
fermion–fermion and boson–fermion interactions are also exactly solvable.

Let A+
i = (Ai)

† and Ai be the operator for creating and annihilating a boson or a fermion
in the ith level. For simplicity, we assume

A+
i =

{
b
†
i for i = 1, 2, . . . , m,

f
†
i for i = m + 1,m + 2, . . . , m + n,

(1)
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where b
†
i , and f

†
i are creation operators for bosons and fermions, respectively, which satisfy

the following commutation [· , ·]− or anti-commutation [· , ·]+ relations:[
bi, b

†
j

]
− = δij , [bi, bj ]− = 0,

[
bi, f

†
j

]
− = 0,

[bi, fj ]− = 0,
[
fi, f

†
j

]
+ = δij , [fi, fj ]+ = 0.

(2)

Using these operators, one can construct generators of the Lie superalgebra gl(m/n) with

Eij = A+
i Aj (3)

for 1 � i, j � m + n, which satisfies the graded commutation relations [18]

[EAB,ECD] = δBCEAD − δAD(−1)(σA−σB)(σC−σD)/4ECB, (4)

where 1 � A,B,C,D � m + n, and

σi =
{

+1 for 1 � i � m,

−1 for m + 1 � i � m + n.
(5)

Let {εj } be a set of independent real parameters with εi �= εj for i �= j and 1 � i, j � n.
One can construct the following Gaudin–Bose or Gaudin–Fermi algebra with

N(x) =
n∑

j=1

O+
j Oj

1 − εjx
, O(x) =

n∑
j=1

Oj

1 − εjx
, O+(x) =

n∑
j=1

O+
j

1 − εjx
, (6)

where Oj = bj or fj and O+
j = b

†
j or f

†
j for Gaudin–Bose or Gaudin–Fermi algebra and x is a

complex parameter, which satisfy the following commutation or anti-commutation relations:

[N(x),O+(y)]− = 1

x − y
(xO+(x) − yO+(y)),

[N(x),O(y)]− = − 1

x − y
(xO(x) − yO(y)),

[O(x),O(y)]± = 0, [O(x),O+(y)]± = 1

x − y
(xf (x) − yf (y)),

(7)

where commutation and anti-commutation relations are applied to Bose and Fermi cases,
respectively,

f (x) =
n∑

j=1

1

1 − εjx
. (8)

Then, using (7), one can prove that the Hamiltonian

Ĥ = ∂

∂x
N(x)|x=0 + GO+(0)O(0), (9)

where G is a real parameter, is exactly diagonalized under the Bethe ansatz wavefunction

|k; {xi}〉 = O+(x1)O
+(x2) · · · O+(xk)|0〉, (10)

where |0〉 is the vacuum state satisfying Oi |0〉 = 0, with energy eigenvalues given by

Ek =
k∑

i=1

1

xi

, (11)

and the set of parameters {xi} satisfy the Bethe ansatz equations,

1

xi

= Gf (xi) for i = 1, 2, . . . , k. (12)
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Besides the obvious trivial root when xi → ∞, there are exactly n different roots of (12).
For the Bose cases, there is no restriction to the roots of (12) in (10) and (11), so x1, x2, . . . , xk

can be taken as any roots of (12). For the Fermi cases, due to the Pauli principle (O+(x))2 = 0
and no pair of roots among x1, x2, . . . , xk can be taken to be the same. This means there are
n!/(n − k)!k! solutions in total. Hence, both the Bose and Fermi Hamiltonians given in (9)
are exactly solvable [19].

Next, we assume that there are m non-degenerate boson levels εi (i = 1, 2, . . . , m) and
n non-degenerate fermion levels with energies εi (i = m + 1,m + 2, . . . , m + n). Using the
same procedure, one can prove that a Hamiltonian constructed by using the generators Eij of
the Lie superalgebra gl(m/n) with

Ĥ =
m+n∑
i=1

εiEii + G
∑

1�i,j�m+n

Eij (13)

is also solvable when εi �= εj for any i �= j . For k-particle excitations, the wavefunction of
the system can be written as

|k; {xi}〉 = A+(x1)A
+(x2) · · · A+(xk)|0〉, (14)

where

A+(x) =
m+n∑
i=1

A+
i

1 − εix
. (15)

Eigen-energies of (13) are still given by (11). The c-numbers x1, x2, . . . , xk in this case should
satisfy

1

xi

= G

m+n∑
j=1

1

1 − εjx
for i = 1, 2, . . . , k. (16)

In this case, similar to the Bose cases shown in (10), x1, x2, . . . , xk can be taken as any
roots of (16). Since f +2

i = 0, the Fermion sectors will vanish automatically when the Pauli
principle is violated.

Furthermore, there exists another exactly solvable hard-core Bose case. Hard-core
bosons, like fermions, satisfy the restriction with

(
b
†
i

)2 = 0. Hence, the operators A+
i

(i = 1, 2, . . . , m + n) in this case uniformly satisfy the nilpotent condition(
A+

i

)2 = 0. (17)

Thus, the solutions (11), (14), (15) and (16) provide complete solutions of (13) with no
pair of the roots among x1, x2, . . . , xk being taken the same.

Finally, similar to [17], one can extend the gl(m/n) Hamiltonian (13) for the hard-core
Bose case by introducing high-order terms. The generators of the Gaudin–Bose or Gaudin–
Fermi algebra {O+(xi),O(x∗

i )} (i = 1, 2, . . . , τ ), where {xi} fulfil (8) and (12) with replacing
n by τ , satisfy the following relations:

[O(x∗
µ),O+(xν)]± = δµνJ (xµ),

J (xµ) =
τ∑

j=1

1

(1 − εjx∗
µ)(1 − εjxµ)

,
(18)

where τ = m or n for Bose or Fermi case. Hence, the operators {O+(xi),O
+(x∗

i )} can be
normalized as {O+(xi)} with

O+(xi) =
√

1

J (xi)
O+(xi), (19)
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and

[O(xµ),O+(xν)]± = δµν. (20)

Using the normalized operators, we may construct a set of commutative pairwise operators,

B+(xi, xj ) = O+(xi)O+(xj ) (21)

with i �= j . The primitive set of such operators is {B+(x1, x2), B
+(x3, x4), . . . ,

B+(x2[τ/2]−1, x2[τ/2])}, where [q] stands for the integer part of q. Let Sτ be the permutation
group operating among the indices {1, 2, . . . , τ }, and ω be a representative in the decomposition
Sτ ↓ (S2⊗)[τ/2]−1S2 with

Sτ =
∑

ω

ω((S2⊗)[τ/2]−1S2). (22)

It is obvious that {B+(xω(1), xω(2)), B
+(xω(3), xω(4)), . . . , B

+(xω(2[τ/2]−1), xω(2[τ/2]))} gives
another set of commutative pairwise operators. So there are τ !/(2[τ/2][τ/2]!) different such
sets in total. Let

P +
i = O+(xω(2i−1))O+(xω(2i)) (23)

for i = 1, 2, . . . , [τ/2], which satisfy the following commutation relations:[
P +

i , P +
j

]
− = 0,

[
Pi, P

+
j

]
− = δij (1 ± (n2i−1 + n2i )), (24)

where the + or − sign in (23) corresponds to the Bose or Fermi cases, and ni =
O+(xω(i))O(xω(i)). In the following, for simplicity, we set ω to be the identity operation.
The procedure and results for other choices of ω are similar. Due to the hard-core restriction,
the relation (24) enables us to show that the extended gl(m/n) Hamiltonian including pairwise
high-order interactions with

Ĥ =
m+n∑
i=1

εiEii + G
∑

1�i,j�m+n

Eij + κ
∑
ij

P+
i Pj

+ κ

∞∑
µ=2

1

(µ!)2

∑
i1 �=···�=i2µ

P+
i1
P+

i2
· · ·P+

iµ
Piµ+1 · · ·Pi2µ

, (25)

where κ is a real parameter, is also exactly solvable, where

P+
i = A+(x2i−1)A+(x2i ) (26)

for i = 1, 2, . . . , [(m + n)/2], with

A+(xj ) =
√

1

J (xj )
A+(xj ), (27)

where

J (xµ) =
m+n∑
j=1

1

(1 − εjx∗
µ)(1 − εjxµ)

. (28)

Let |j1, j2, . . . , jp〉 be the pairwise vacuum state that satisfies

Pi |j1, j2, . . . , jp〉 = 0 (29)

for 1 � i � [(m + n)/2], where j1, j2, . . . , jp indicate that those p levels are occupied by
single particles. For example, when m + n = 4, the pairwise vacuum states in this case are

{|0〉, |1〉, |2〉, |3〉, |4〉, |13〉, |14〉, |24〉}, (30)

where |0〉 is the vacuum state, and |i〉 = A+(xi)|0〉, etc.
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Using the procedure similar to that used in [17], one can prove that k-pair eigenstate of
(25) can be written as

|k; ζ ; j1, j2, . . . , jp〉 =
∑

1�i1<i2<···<ik<[(m+n)/2]

′
C

(ζ)

i1i2···ikP
+
i1
P+

i2
· · ·P+

ik
|j1, j2, · · · , jp〉, (31)

where the prime indicates that the sum only runs over those iµ that are not related to any one
of the {jν} in the pairwise vacuum state |j1, j2, . . . , jp〉 due to the hard-core restriction. In
addition, due to the hard-core restriction and the strict ordering of the sum in (31), the term
with ±(n2i−1 +n2i ) given by the commutation relation in (24) has no effect when Pi is applied
to (31). Thus, the expansion coefficient C

(ζ)

i1i2···ik can be expressed as

C
(ζ)

i1i2···ik = 1

1 − y(ζ )
∑k

µ φiµ

, (32)

where y(ζ ) is a c-number to be determined, and φi = 1/x2i−1 + 1/x2i . The k-pair excitation
energies of (25) are given by

E
(ζ)

k =
p∑

µ=1

1

xjµ

+
1

y(ζ )
+ κ(k − 1) (33)

and the variable y(ζ ) is given by

1

y(ζ )
− κ

∑
1�i1<i2<···<ik<[(m+n)/2]

′
C

(ζ)

i1i2···ik = 0. (34)

It is clear that there are (m + n)!/(2[(m+n)/2][(m + n)/2]!) different Hamiltonians similar
to that given by (25), which can be obtained by replacing the operators P+

i in (25) with P+
ω(i)

for i = 1, 2, . . . , [(m + n)/2]. These Hamiltonians are all exactly diagonalizable by using the
procedure outlined above.

There are several special cases of Hamiltonian (25). When κ = 0, the Hamiltonian (25)
contains only one-body terms, which describes a system with spinless fermions and hard-core
bosons hopping among different orbits. When G = 0 and κ �= 0, the Hamiltonian (25)
describes a system of hard-core bosons and spinless fermions hopping among different orbits
with high order pairing interactions, which is similar to the pure hard-core boson case shown
in [17]. The general Hamiltonian given in (25) can be regarded as a special solvable SUSY
case for certain trapped boson–fermion mixtures with high order pairing interactions [20, 21].

In summary, we have shown that a simple gl(m/n) Bose–Fermi Hamiltonian and a class
of hard-core gl(m/n) Bose–Fermi Hamiltonians with high order interaction terms are exactly
solvable. Excitation energies and corresponding wavefunctions can be obtained by using a
simple algebraic Bethe ansatz, which provides new classes of solvable models with dynamical
SUSY. The results should be helpful in searching for other exactly solvable SUSY quantum
many-body models and understanding the nature of the exactly or quasi-exactly solvability. It
is obvious that such Hamiltonians with only Bose or Fermi sectors are also exactly solvable
by using the same approach. Indeed, it was shown recently that a similar Fermi version of the
model with high-order terms is applicable to well-deformed nuclei, and may also be useful in
studying pairing phenomena in metallic clusters of nanoscale size [17]. The Bose and Fermi
version of the model may also be useful in studying hard-core Bose– and Fermi–Hubbard
models, Bose–Einstein condensates, etc. An extension to including spin degrees of freedom
in the model is also possible. Work along these lines is in progress.
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